In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes
نویسندگان
چکیده
Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A₄₂₀; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales.
منابع مشابه
Differential support of lake food webs by three types of terrestrial organic carbon.
Organic carbon inputs from outside of ecosystem boundaries potentially subsidize recipient food webs. Four whole-lake additions of dissolved inorganic 13C were made to reveal the pathways of subsidies to lakes from terrestrial dissolved organic carbon (t-DOC), terrestrial particulate organic carbon (t-POC) and terrestrial prey items. Terrestrial DOC, the largest input, was a major subsidy of pe...
متن کاملMass Flux Calculations Show Strong Allochthonous Support of Freshwater Zooplankton Production Is Unlikely
Many studies have concluded terrestrial carbon inputs contribute 20-70% of the carbon supporting zooplankton and fish production in lakes. Conversely, it is also known that terrestrial carbon inputs are of very low nutritional quality and phytoplankton are strongly preferentially utilized by zooplankton. Because of its low quality, substantial terrestrial support of zooplankton production in la...
متن کاملRelative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient
Terrestrial ecosystems export large quantities of dissolved organic carbon (DOC) to aquatic ecosystems. This DOC can serve as a resource for heterotrophic bacteria and influence whether lakes function as sources or sinks of atmospheric CO2. However, it remains unclear as to how terrestrial carbon moves through lake food webs. We addressed this topic by conducting a comparative lake survey in th...
متن کاملRegulation of carbon dioxide emission from Swedish boreal lakes and the Gulf of Bothnia
The global carbon cycle is subject to intense research, where sources and sinks for greenhouse gases, carbon dioxide in particular, are estimated for various systems and biomes. Lakes have previously been neglected in carbon balance estimations, but have recently been recognized to be significant net sources of CO2. This thesis estimates emission of carbon dioxide (CO2) from boreal lakes and fa...
متن کاملThe effect of lake browning and respiration mode on the burial and fate of carbon and mercury in the sediment of two boreal lakes
In many northern temperate regions, the water color of lakes has increased over the past decades (“lake browning”), probably caused by an increased export of dissolved organic matter from soils. We investigated if the increase in water color in two lakes in Norway has resulted in increased burial of organic carbon (OC) and mercury (Hg) in the sediments and if the Hg was prone to methylation. La...
متن کامل